2019년09월17일tue
로그인 | 회원가입
OFF
트위터로 보내기 싸이월드 공감
기사글확대 기사글축소 기사스크랩 이메일문의 프린트하기
AI(인공지능)로 주의력결핍과잉행동장애(ADHD) '진단'
서울대병원 김붕년 교수팀, MRI 영상 활용 '알고리즘' 개발
[ 2019년 09월 10일 11시 21분 ]

[
데일리메디 박대진 기자] 인공지능(AI)을 활용해 주의력결핍과잉행동장애(ADHD, Attention Deficit Hyperactivity Disorder)를 확인할 수 있는 진단법이 나와 관심을 모은다.
 
서울대학교병원 김붕년, 카이스트 정범석, 가톨릭대 유재현 교수팀은 기계학습 방법을 이용해 뇌 영상만으로 ADHD와 정상발달 아동을 구분할 수 있는 알고리즘을 개발했다고 10일 밝혔다.
 
집중력 저하, 산만함을 특징으로 하는 ADHD는 진단이 매우 까다로웠다. 발병 여부를 결정할 수 있는 명확한 근거가 없으며 객관적인 측정방법도 아직 확립되지 않았기 때문이다.
 
현재 의료진은 주로 관찰과 부모 보고에 의존해 ADHD를 진단했다. 문제는 부모의 주관적인 판단이 개입될 여지가 많다는 점이다.
 
가령 자녀가 ADHD인지 유달리 걱정하는 부모의 진술은 과장될 가능성이 높다. 오히려 치료가 필요한 아이가 부모의 잘못된 믿음, 진료거부로 방치되기도 한다.
 
대다수의 부모가 그렇듯, 자신의 자녀가 정신적 장애가 있다고 받아들이기 어렵기 때문이다.
 
또한 환자의 상태를 정확히 가려내기 위해서는 검사자의 높은 숙련도가 요구됐다. 의료진은 비교적 편파적일 수 있는 부모 진술과 개인의 다채로운 행동 속에서 판단을 내려야했다.
 
연구팀이 개발한 프로그램은 47명의 ADHD, 47명의 정상군의 fMRI, DTI 등 다양한 뇌 영상에서 방대한 데이터를 확보했다.
 
이후 축적된 데이터를 기계학습해 해당 뇌가 ADHD 환자의 뇌인지 정상인의 뇌인지 가려낸다.
 
개발된 모델은 85% 이상의 진단을 알맞게 분류할 정도로 높은 정확도를 보였으며, 새로운 환자군 데이터에서도 유사한 수행 능력을 보였다.
 
프로그램이 주목한 것은 뇌의 몇몇 중요 부위에 발생한 손상이었다. ADHD 환자의 뇌는 중요 자극을 선별하는 네트워크과 반응 억제를 담당하는 전전두엽에 구조적인 결함이 뚜렷이 존재했다.
 
ADHD에서 흔히 관찰되는 부주의, 과잉행동-충동성 증상 또한 위의 구조적 뇌 네트워크 결함으로 설명할 수 있는 것으로 밝혀졌다.
 
김붕년 교수는 이번 연구에서 뇌영상 빅데이터를 활용해 정상적으로 발달하는 아이와 ADHD 환아를 구별할 수 있게 됐다고 의미를 부여했다.
 
이어 다양한 뇌 구조 및 기능영상은 AI 기반 플랫폼을 통해, 향후 ADHD행동의 원인을 완벽히 설명할 수 있는 근거가 될 수 있기에 잠재력이 무궁무진하다고 덧붙였다.
 
한편, 이번 연구는 뇌 영상과 행동(Brain Imaging & Behavior)’ 최근호에 게재됐다.
djpark@dailymedi.com
이기자의 다른뉴스보기
무통장입금 정보입력 입금자명 입금예정일자
(입금하실 입금자명 + 입금예정일자를 입력하세요)
[관련뉴스]
- 관련뉴스가 없습니다.
트위터로 보내기 싸이월드 공감
기사글확대 기사글축소 기사스크랩 이메일문의 프린트하기
송진원 국제한타바이러스학회 회장(고대의대 미생물학교실) 취임
성빈센트병원 박동춘 교수(산부인과), 한국연구재단 개인연구지원사업
부산부민병원, 정성수 척추센터 의무원장 영입
이관순 한미약품 부회장 딸
현동근 교수(인하대병원 신경외과), 보건복지부장관 표창
윤정호 교수(단국대병원 신경외과), 보건복지부장관 표창
부안의원→부안내과의원 김윤석 원장
인천나은병원, 대한뇌졸중학회 ‘뇌졸중센터 인증’ 획득
광주식품의약품안전청장에 양종수 前 복지부 국장
복지부 감사관 배금주·질병관리본부 생명의과학센터장 김성곤
오송첨단의료산업진흥재단, 사할린 영주귀국동포 성금 307만원
윤동섭 강남세브란스병원장, 서울 강남구 의료관광협회 회장 취임
김환수 제주 한림김안과 원장·김경수 군산 동서병원장 모친상
황대욱 교수(서울아산병원 외과) 장인상